A Christmas Binary Miracle

December 26, 2013 in Systems9 minutes

My brother got a little puzzle in his stocking this Christmas. It was a little cardboard booklet, and on each page was written a block of numbers, like so:

    BLOCK ONE
    1    3    5    7    9    11   13   15
    17   19   21   23   25   27   29   31
    33   35   37   39   41   43   45   47
    49   51   53   55   57   59   61   63
    
    BLOCK TWO
    2    3    6    7    10   11   14   15
    18   19   22   23   26   27   30   31
    34   35   38   39   42   43   46   47
    50   51   54   55   58   59   62   63
    
    BLOCK THREE
    4    5    6    7    12   13   14   15
    20   21   22   23   28   29   30   31
    36   37   38   39   44   45   46   47
    52   53   54   55   60   61   62   63
    
    BLOCK FOUR
    8    9    10   11   12   13   14   15
    24   25   26   27   28   29   30   31
    40   41   42   43   44   45   46   47
    56   57   58   59   60   61   62   63
    
    BLOCK FIVE
    16   17   18   19   20   21   22   23
    24   25   26   27   28   29   30   31
    48   49   50   51   52   53   54   55
    56   57   58   59   60   61   62   63
    
    BLOCK SIX
    32   33   34   35   36   37   38   39
    40   41   42   43   44   45   46   47
    48   49   50   51   52   53   54   55
    56   57   58   59   60   61   62   63

You’re to ask someone to pick any number they see in any block, and don’t tell you what it is. They are, however, required to find every instance of that number in the entire booklet, and tell you which blocks of numbers that specific number shows up in. Of those blocks that they’ve identified, you as the “puzzler” are supposed to add the first number (top left corner) in each of those blocks, and the resulting number will be the number they selected.

Try it out. Let’s say our number is 54. The number 54 is present on blocks 2, 3, 5, and 6. The first numbers in those blocks are 2, 4, 16, and 32 respectively. The sum of those four numbers is 54.

Pretty cool, eh?

Spoilers Below!!

I don’t post a lot of purely math-related content, but I did so here because there’s a parallel between the math behind this puzzle and network engineering.

If you take a look at the first number in each block, you’ll notice they’re all significant decimal numbers when translating to binary. These are all the highest values that each binary digit, in order, can represent.

For instance, the first bit in a binary string can only describe, at most, the number 1. A second bit is twice that, because a binary string of “10” is equal to 2, and so on up to the 6th block, which is equivalent to a 6-bit string (100000 in binary equals 32). So, if you assign bit values to each block of numbers, it correlates to a binary digit.

Let’s pick on our example again. We had the number 54, and noticed that it was present in blocks 2, 3, 5, and 6. Well, if we take our six blocks, and represent each with a binary digit - setting that digit to 1 if the number is present, and 0 if it is not, we get “011011”. That is the binary equivalent to the number 54.

It follows, then, that each block contains literally all numbers that have that respective bit value set to 1 in a six-bit binary number. Take block 3 for example. The third bit (that holds the “4” value in decimal) is set to 1 for every single number in that block.

What you’re doing by solving this puzzle is actually what network engineers do when they do binary conversions, such as when subnetting. It binary, or base2 math at it’s core, and functions exactly the same way.

Now that’s cool.

Glutton for Punishment

Because of the parallels with network engineering, you may also think of a 6-bit puzzle as a little…….incomplete. We like to deal with binary values in 8-bit chunks. So I set out to see the impact of adding two bits to this puzzle. After all, how hard could it be, just adding two bits? Keep in mind that for every bit you add, you’re doubling the scope of the puzzle. So, since we added TWO bits, we doubled, and then doubled again. This impacts not only the number of potential values, but also the number of rows, and the number of blocks.

So this is what happened:

BLOCK ONE
1    3    5    7    9    11   13   15
17   19   21   23   25   27   29   31
33   35   37   39   41   43   45   47
49   51   53   55   57   59   61   63
65   67   69   71   73   75   77   79
81   83   85   87   89   91   93   95
97   99   101  103  105  107  109  111
113  115  117  119  121  123  125  127
129  131  133  135  137  139  141  143
145  147  149  151  153  155  157  159
161  163  165  167  169  171  173  175
177  179  181  183  185  187  189  191
193  195  197  199  201  203  205  207
209  211  213  215  217  219  221  223
225  227  229  231  233  235  237  239
241  243  245  247  249  251  253  255

BLOCK TWO
2    3    6    7    10   11   14   15
18   19   22   23   26   27   30   31
34   35   38   39   42   43   46   47
50   51   54   55   58   59   62   63
66   67   70   71   74   75   78   79
82   83   86   87   90   91   94   95
98   99   102  103  106  107  110  111
114  115  118  119  122  123  126  127
130  131  134  135  138  139  142  143
146  147  150  151  154  155  158  159
162  163  166  167  170  171  174  175
178  179  182  183  186  187  190  191
194  195  198  199  202  203  206  207
210  211  214  215  218  219  223  224
227  228  231  232  235  236  239  240
243  244  247  248  251  252  254  255

BLOCK THREE
4    5    6    7    12   13   14   15
20   21   22   23   28   29   30   31
36   37   38   39   44   45   46   47
52   53   54   55   60   61   62   63
68   69   70   71   76   77   78   79
84   85   86   87   92   93   94   95
100  101  102  103  108  109  110  111
116  117  118  119  124  125  126  127
132  133  134  135  140  141  142  143
148  149  150  151  156  157  158  159
164  165  166  167  172  173  174  175
180  181  182  183  188  189  190  191
196  197  198  199  204  205  206  207
212  213  214  215  220  221  222  223
228  229  230  231  236  237  238  239
244  245  246  247  252  253  254  255

BLOCK FOUR
8    9    10   11   12   13   14   15
24   25   26   27   28   29   30   31
40   41   42   43   44   45   46   47
56   57   58   59   60   61   62   63
72   73   74   75   76   77   78   79
88   89   90   91   92   93   94   95
104  105  106  107  108  109  110  111
120  121  122  123  124  125  126  127
136  137  138  139  140  141  142  143
152  153  154  155  156  157  158  159
168  169  170  171  172  173  174  175
184  185  186  187  188  189  190  191
200  201  202  203  204  205  206  207
216  217  218  219  220  221  222  223
232  233  234  235  236  237  238  239
248  249  250  251  252  253  254  255

BLOCK FIVE
16   17   18   19   20   21   22   23
24   25   26   27   28   29   30   31
48   49   50   51   52   53   54   55
56   57   58   59   60   61   62   63
80   81   82   83   84   85   86   87
88   89   90   91   92   93   94   95
112  113  114  115  116  117  118  119
120  121  122  123  124  125  126  127
144  145  146  147  148  149  150  151
152  153  154  155  156  157  158  159
176  177  178  179  180  181  182  183
184  185  186  187  188  189  190  191
208  209  210  211  212  213  214  215
216  217  218  219  220  221  222  223
240  241  242  243  244  245  246  247
248  249  250  251  252  253  254  255

BLOCK SIX
32   33   34   35   36   37   38   39
40   41   42   43   44   45   46   47
48   49   50   51   52   53   54   55
56   57   58   59   60   61   62   63
96   97   98   99   100  101  102  103
104  105  106  107  108  109  110  111
112  113  114  115  116  117  118  119
120  121  122  123  124  125  126  127
160  161  162  163  164  165  166  167
168  169  170  171  172  173  174  175
176  177  178  179  180  181  182  183
184  185  186  187  188  189  190  191
224  225  226  227  228  229  230  231
232  233  234  235  236  237  238  239
240  241  242  243  244  245  246  247
248  249  250  251  252  253  254  255

BLOCK SEVEN
64   65   66   67   68   69   70   71
72   73   74   75   76   77   78   79
80   81   82   83   84   85   86   87
88   89   90   91   92   93   94   95
96   97   98   99   100  101  102  103
104  105  106  107  108  109  110  111
112  113  114  115  116  117  118  119
120  121  122  123  124  125  126  127
192  193  194  195  196  197  198  199
200  201  202  203  204  205  206  207
208  209  210  211  212  213  214  215
216  217  218  219  220  221  222  223
224  225  226  227  228  229  230  231
232  233  234  235  236  237  238  239
240  241  242  243  244  245  246  247
248  249  250  251  252  253  254  255

BLOCK EIGHT
128  129  130  131  132  133  134  135
136  137  138  139  140  141  142  143
144  145  146  147  148  149  150  151
152  153  154  155  156  157  158  159
160  161  162  163  164  165  166  167
168  169  170  171  172  173  174  175
176  177  178  179  180  181  182  183
184  185  186  187  188  189  190  191
192  193  194  195  196  197  198  199
200  201  202  203  204  205  206  207
208  209  210  211  212  213  214  215
216  217  218  219  220  221  222  223
224  225  226  227  228  229  230  231
232  233  234  235  236  237  238  239
240  241  242  243  244  245  246  247
248  249  250  251  252  253  254  255

Notice that the last number is 255 - this is because if all bits in an 8-bit binary number are set to 1, then the resulting decimal number is 255. This is why it’s the last number in every single block.

Hope everyone had a great Christmas and that it’s not too late to throw this puzzle in front of some relatives and blow them away with math!